
Bilinear forms

June 25, 2017

In this chapter we study �nite-dimensional vector spaces over an arbitrary �eld F with a bilinear
form de�ned on the space. This is a generalisation of the notion of an inner product space over R.

1 De�nition. Matrix representation.

1.1 Bilinear forms

Let V be a vector space over F.
De�nition 1: A bilinear form on V is a map g : V × V → F such that for any u, u′, v, v′ in V and
scalar a ∈ F we have

1. (linearity in the �rst variable) g(u+ u′, v) = g(u, v) + g(u′, v) and g(au, v) = ag(u, v);

2. (linearity in the second variable) g(u, v + v′) = g(u, v) + g(u, v′) and g(u, av) = ag(u, v).

Remark 2: Equivalently, g : V × V → F is a bilinear form if and only if for all u ∈ V the map
lu : V → V de�ned by lu : v 7→ g(u, v) is a linear form on V and for all v ∈ V the map rv : V → V
de�ned by rv : u 7→ g(u, v) is a linear form on V .

Example 3: 1. Let (V, 〈, 〉) be an inner product space over R. Then g : V × V → R de�ned by
g(u, v) = 〈u, v〉 is a bilinear form. In particular, the standard dot product in Rn is a bilinear
form. (Note, however, that this is not so in an inner product space over C. The standard dot
product in Cn is not a bilinear form!)

2. The zero form. F is an arbitrary �eld and g : V ×V → F is de�ned by g(u, v) = 0 for all u, v ∈ V .

3. V = F2
col and g is the determinant form:

g(u, v) = det

[
x1 y1
x2 y2

]
= x1y2 − x2y1

for u =

[
x1
x2

]
, v =

[
y1
y2

]
.

(Since the determinant of a matrix is linear in each of its columns when the remaining n − 1
columns are �xed, the example can be generalized to V = Fncol for n > 2. Consider an n × n
matrix with all but two columns �xed, then its determinant, considered as a function of the two
remaining columns, is bilinear in its two arguments.)

4. V = R4 and g(u, v) = x1y1 + x2y2 + x3y3 − x4y4 for u = (x1, x2, x3, x4) and v = (y1, y2, y3, y4)
(this form is called the Lorentz form, and R4 endowed with this form is called the Minkowski
space � an important tool in the special relativity theory).

5. If g is a bilinear form on V and f : V → V is a linear operator, then g̃ : V × V → F de�ned by
g̃(u, v) = g(f(u), v) is also bilinear.
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1.2 Matrix representation

Similarly to linear operators, bilinear forms can be de�ned using matrices (after a basis has been �xed).

De�nition 4: Let g be a bilinear form on a space V , and let B = (b1, b2, . . . , bn) be a basis of V . Then
the matrix G with entries gij = g(bi, bj) is called the matrix of the bilinear form g with respect to the
basis B. We will also call G a Gram matrix of g.

Lemma 5: Let g be a bilinear form on a �nite dimensional vector space V , let G be its Gram matrix
with respect to some basis B.

If v, w ∈ V are represented in B as

[v]B =

v1...
vn

 and [w]B =

w1

...
wn

 then

g(v, w) =

n∑
i=1

n∑
j=1

viwjgij = [v]tBG[w]B

This shows that the form is de�ned uniquely by its matrix.

Proof. We have

g(v, w) = g(v,

n∑
j=1

wjbj) =

n∑
j=1

wjg(v, bj) by linearity in the second variable

=

n∑
j=1

wjg(

n∑
i=1

vibi, bj) =

n∑
j=1

n∑
i=1

viwjg(bi, bj) by linearity in the �rst variable

=

n∑
i=1

n∑
j=1

viwjgij

On the other hand we have

[v]tBG[w]B =
[
v1 v2 . . . vn

]t

g11 g12 . . . g1n
g21 g22 . . . g2n
...

...
...

gn1 gn2 . . . gnn



w1

w2

...
wn



=
[
v1 v2 . . . vn

]t

∑n
j=1 g1jwj∑n
j=1 g2jwj

...∑n
j=1 gnjwj


=

n∑
i=1

n∑
j=1

viwjgij

which proves the claim.

We see that that the choice of a basis establishes one-to-one correspondence between bilinear forms
on an n-dimensional space and Mn(F).
Example 6: 1. The matrix G of the standard inner product of Rn with respect to its standard

basis is the identity matrix G = I. More generally, the matrix G of any inner product on Rn
with respect to any of its orthogonal bases is G = I.

2



2. The matrix of the zero form with respect to any basis is the zero matrix G = 0.

3. The matrix of the determinant form in V = F2
col with respect to the standard basis of F2

col is

G =

[
0 1
−1 0

]
.

4. In R4 the matrix of the Lorentz form g(u, v) = x1y1 + x2y2 + x3y3 − x4y4 with respect to the
standard basis is

G =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


1.3 Change of basis

Just as in the case of linear operators, we would like to know how the matrix of a bilinear form is
transformed when the basis is changed.

Here is the calculation: we have seen that for all v, w ∈ V we have g(v, w) = [v]tBG[w]B where G is
the matrix of g with respect to B. In another basis C this would mean g(v, w) = [v]tCG̃[w]C , where G̃
is the matrix of g with respect to C.

Denote by M the change of basis matrix MCB , it is invertible and we have [v]B = M [v]C and
[w]B =M [w]C . Putting all this together, we get

[v]tCG̃[w]C = g(v, w) = [v]tBG[w]B = (M [v]C)
tGM [w]C = [v]tC(M

tGM)[w]C

The calculation shows that the matrix of g with respect to C is M tGM . Hence two matrices G, G̃
represent the same bilinear form with respect to di�erent bases i� there exists an invertible matrix M
such that G̃ =M tGM

Remark 7: Contrast this with the case of matrices representing the same operators: A and A′ represent
the same operator with respect to two di�erent bases i� there exists an invertible matrix M such that
A′ =M−1AM .

This prompts the following

De�nition 8: Let F be a �eld. Two matrices A ∈ Mn(F) and B ∈ Mn(F) are called congruent if
there exists an invertible P ∈Mn(F) such that A = P tBP .

Using the notion of congruence, the result we have shown can be stated in the following way:

Proposition 9: Two square matrices represent the same bilinear form with respect to two bases if and
only if they are congruent.

2 Symmetric forms. Existence of an orthogonal basis.

In this section we assume that the �eld F has characteristic distinct from 2 (i.e. the sum 1 + 1 is not
zero).

De�nition 10: Let g be a bilinear form de�ned on V .
Then the bilinear form gt de�ned by gt(u, v) = g(v, u) for all u, v ∈ V is called the transposed form.
If g = gt then the form g is called symmetric; if g = −gt then the form g is called anti-symmetric.

Remark 11: A form is symmetric i� its matrix with respect to any basis (and hence to every basis)
is symmetric, that is i� it satis�es At = A.

It is easy to see that in examples 1-4 in Section 1.2 the form is either symmetric or anti-symmetric,
with the exception of the zero form, which is the unique form which is both symmetric and anti-
symmetric at the same time.
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We will be interested in symmetric bilinear forms. The theory developed here is a generalization
of the theory of inner product real vector spaces.

Indeed, a symmetric bilinear form satis�es the �rst two axioms of a real inner product, but the
third axiom (the positivity condition) has been dropped. Thus it is possible to have for a non-zero
vector v ∈ V : g(v, v) = 0 or g(v, v) < 0.

2.1 Orthogonality

Despite this di�erence, the orthogonality notation is used without change:

De�nition 12: For u, v ∈ V we write u ⊥g v and say "u is orthogonal to v with respect to the form
g" if g(u, v) = 0. The reference to the form can be omitted when g is clear from the context, and the
notation can be short-handed to u ⊥ v.

Because g is symmetric, this is a symmetric notion thus we can write indi�erently u ⊥ v or v ⊥ u.
Example 13: 1. If g = 0 then u ⊥ v for all u, v ∈ V .

2. The vector v = (1, 0, 0,−1) is orthogonal to itself with respect to the Lorentz form in R4.

3. The vector e2 = (0, 1) is orthogonal to any vector in R2 with respect to the form given by

G =

[
5 0
0 0

]
in the standard basis (e1, e2) of R2.

Remark 14: Just as we de�ned the notion of orthogonality for symmetric forms, it can be de�ned
for anti-symmetric forms (and it will still be a symmetric relation: u ⊥ v if and only if v ⊥ u). In
that setting every vector is orthogonal to itself. Indeed, for all u ∈ V holds g(u, u) = −g(u, u) so
2g(u, u) = 0, hence g(u, u) = 0. (We consider the case where char F = 0 therefore here and in the
sequel we are free to divide by 2 or by 4. 2 6= 0 so 4 = 2 · 2 6= 0.)

2.2 Quadratic form associated to a bilinear form

De�nition 15: Let g be a symmetric bilinear form on V . The function q : V → F de�ned by
q(v) = g(v, v) is called the quadratic form associated with g.

Recall that the term "form" is used for any map that returns a scalar as its output (e.g. a linear
form takes a vector and returns a scalar, a bilinear form takes two vectors and retrurns a scalar, ...).
The adjective "quadratic" refers to the following property: if λ ∈ F, and v ∈ V , we have

q(λv) = g(λv, λv) = λ2g(v, v) = λ2q(v)

The following proposition shows that no information is lost when a symmetric bilinear form is
replaced by its associated quadratic form: g is uniquely de�ned by q.

Proposition 16: (Polarization formula for symmetric bilinear forms) Let q : V → R be a quadratic
form associated to a symmetric bilinear form g. We have

g(u, v) =
q(u+ v)− q(u)− q(v)

2

In particular, no two distinct bilinear forms have the same associated quadratic form.

Proof. Note that for all u, v ∈ V we have

q(u+ v)− q(u)− q(v) = g(u+ v, u+ v)− g(u, u)− g(v, v) = 2g(u, v)

which proves the result (here we use the assumption on charF 6= 2 to divide both side of the equation
by 2).
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Now if g̃ is another symmetric bilinear form whose associated quadratic form is q, then the formula
holds for g̃, that is for all u, v ∈ V we have

g̃(u, v) =
q(u+ v)− q(u)− q(v)

2

Thus we have g = g̃.

Remark 17: Alternatively, one can use the polarization identity, whose version appeared in the chapter
on inner product spaces. It holds for a general symmetric bilinear form without any change:

g(u, v) =
q(u+ v)− q(u− v)

4

The following proposition shows that in our symmetric case there is always a vector which is not
self-orthogonal (unless g ≡ 0).

Proposition 18: For any symmetric bilinear form g on V which is not identically zero there exists a
vector v ∈ V such that g(v, v) 6= 0.

Proof. Let g be a bilinear form which is not identically zero. Use any of the two identities above.
There is a pair of vectors u, v ∈ V for which the left-hand side is non-zero. Hence at least one of the
terms in the right-hand side is non-zero, and there exists w ∈ {u, v, u+ v} for which q(w) 6= 0.

2.3 Kernel of a bilinear form. Perp.

De�nition 19: The kernel of a bilinear form g is the set V0 = {u | g(u, v) = 0 for all v ∈ V }.
A bilinear form g on a space V is called non-degenerate if the set is trivial: V0 = {0}.
Equivalently, given a vector u, one can think of the linear form g(u, ·) : V → F de�ned by v 7→

g(u, v). Then g is non degenerate i� for any nonzero vector u, the form g(u, ·) is not the zero form
(which sends everyone to zero).

Example 20: 1. Inner product is a non-degenerate bilinear form.

2. The Lorentz form is a non-degenerate bilinear form in R4 (prove this).

If the matrix of g with respect to some basis B is G, we have

u ∈ V0 ⇐⇒ for any v ∈ V, g(u, v) = [u]tBG[v]B = 0

⇐⇒ for i = 1, . . . , n [u]tBG[bi]B = 0

⇐⇒ [u]tBG = 0 ⇐⇒ Gt[u]B = 0

Proposition 21: A bilinear form g on a space V is non-degenerate if and only if its matrix G with
respect to a basis B of V is non-degenerate (i.e. non singular).

Proof. Let B be a basis of V . Recall that g(v, w) = [v]tBG[w]B.
g is degenerate ⇐⇒ V0 6= 0 ⇐⇒ there exists u 6= 0 such that Gt[u]B = 0 ⇐⇒ Gt is degenerate
(singular) ⇐⇒ G is singular (recall that detG = detGt).

Let W be a vector subspace of V . We de�ne its perp, W⊥, just as in inner product spaces.

De�nition 22: W⊥ = {u | g(u,w) = 0 for all w ∈W}
Note that in this notation V0 = V ⊥.
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2.4 Orthogonal bases

De�nition 23: A basis B = (b1, . . . , bn) in V is said to be orthogonal with respect to g if for all i 6= j
we have g(bi, bj) = 0.

Remark 24: In other words, a basis B is an orthogonal basis for g if and only if the Gram matrix G
of g with respect to B is a diagonal matrix.

The following theorem shows that if g is a bilinear symmetric form, then there always exists an
orthogonal basis with respect to g.

Theorem 25: We assume char F 6= 2. Let V be a �nite dimensional vector space over F, and let g be
a symmetric bilinear form g over V . Then there exists an orthogonal basis for V with respect to g.

Proof. We prove the claim by induction on dimV . If dimV = 1, then any basis is orthogonal.
Let dimV = n, n ≥ 2 and assume the claim to be true for any space of dimension smaller than n.

Either g is identically zero on V (then any basis is an orthogonal basis for g), or, by Proposition 18,
there is a vector w ∈ V such that g(w,w) 6= 0.

Write W = Span(w). We prove now that V =W ⊕W⊥:

1. for any v ∈ V , we write v = v1 + v2 where v1 = g(w,v)
g(w,w)w and v2 = v− v1. Note that v1 ∈W , and

g(w, v2) = g(w, v − g(w, v)

g(w,w)
w) = g(w, v)− g(w, v)

g(w,w)
g(w,w) = 0

so v2 ∈W⊥. We have proved V =W +W⊥.

2. If v ∈ W ∩W⊥ then v = aw for a ∈ F, and g(w, aw) = ag(w,w) = 0 - now g(w,w) 6= 0 so we
must have a = 0 thus v = 0. We have proved W ∩W⊥ = {0}.

The restriction g|W⊥ is a symmetric bilinear form on a vector space of dimension < n, therefore
by the induction assumption W⊥ has a basis (v1, ..., vn−1) which is orthogonal with respect to g. But
any vector in W⊥ is orthogonal to w, hence this is true of the vi's. On the other hand, V =W ⊕W⊥
hence the union of the basis (w) for W with the basis (v1, ..., vn−1) for W

⊥ forms a basis for V .
Then B = (w, v1, ..., vn−1) is a basis of V which is orthogonal with respect to g.

Corollary 26: Any symmetric matrix is congruent to a diagonal one, in other words, if A ∈ Mn(F)
is symmetric, there is an invertible matrix P ∈Mn(F) such that P tAP is a diagonal matrix.

Corollary 27: Let q : V → F be the quadratic form associated to a symmetric bilinear form g. There

exists a basis B and scalars a1, . . . , an such that for any vector v ∈ V if [v]B =

 x1x2
...xn

, we have

q(v) = a1x
2
1 + . . .+ anx

n
n

2.5 Diagonalization algorithm

We are looking for an invertible matrix P such that D = P tAP is diagonal. (If A is the Gram matrix
of g in a basis B, then columns of P are the coordinates of vectors of the new orthogonal basis C in
the old basis B: [v]B = P [v]C , and

g(v, w) = [v]tBA[w]B = [v]tC [P
tAP ][w]C

The matrix P will be built as a product of elementary matrices, corresponding to elementary
operations performed on rows of a matrix (rows interchange, multiplication by a non-zero constant,
addition to a row a multiple of another one).
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Performing such operation on rows (columns) of a matrix A is the same as multiplying A by an
invertible elementary matrix on the left (on the right). So if we perform the same elementary operation
on the rows and then on the columns, we get Qt1AQ1, then Q

t
2Q

t
1AQ1Q2 = (Q1Q2)

tAQ1Q2, etc, �nally
arriving at D = (Q1 . . . Qn)

tA(Q1 . . . Qn).
This way we get both P = Q1 . . . Qn and D = P tAP . To keep track of changes of bases, we put

the unit matrix on the right of A and simultaneously perform the same operations on the rows only of
that matrix to get (Q1 . . . Qn)

tI = P t.
(We could get P itself instead of P t, doing elementary operations on the columns of the matrix on

the right, but our routine is slightly more convenient � the row operations are performed on the rows
of the "big" double-sized matrix, while the column operations are performed on its left half only. A
small price to pay is to remember that in the end of the process the new basis should be read from the
rows, rather than columns, of the matrix on the right.

Example 28: Perform this diagonalization for

A =

 1 −3 2
−3 7 −5
2 −5 8


 1 −3 2 1 0 0
−3 7 −5 0 1 0
2 −5 8 0 0 1

 3R1+R2→R2
−2R1+R3→R3−−−−−−−−−−→

1 −3 2 1 0 0
0 −2 1 3 1 0
0 1 4 −2 0 1

 3C1+C2→C2
−2C1+C3→C3−−−−−−−−−→

1 0 0 1 0 0
0 −2 1 3 1 0
0 1 4 −2 0 1

 R2+2R3→R3−−−−−−−−→

1 0 0 1 0 0
0 −2 1 3 1 0
0 0 9 −1 1 2

 C2+2C3→C3−−−−−−−−→

1 0 0 1 0 0
0 −2 0 3 1 0
0 0 18 −1 1 2


So

D =

1 0 0
0 −2 0
0 0 18

 and P =

1 3 −1
0 1 1
0 0 2


If A is the matrix of g in the standard basis of R3

col, then D = (p1, p2, p3) where

p1 =

10
0

 , p2 =

31
0

 , p3 =

−11
2


is an orthogonal basis for g.

3 Classi�cation of bilinear forms

We want to understand all the possible symmetric bilinear forms over �nite dimensional vector spaces
up to a change of basis, in other words, we want to understand what are the possible congruence classes
for a mtrix. The answer depends on the �rld over which we work, we will only examine the cases F = C
and F = R.

3.1 The complex case

Let V be a �nite dimensional vector space over C. Let g be a symmetric bilinear form over V . We saw
that there exists an orthogonal basis B = (b1, . . . , bn). Now up to reordering B, we can assume that
there is an index k ≤ n such that g(bi, bi) 6= 0 i� i ≤ k.

For each i ≤ k, we set αi ∈ C to be such that α2
i = g(bi, bi). We now de�ne a new basis

B′ = (b′1, . . . , b
′
n) where b

′
i =

bi
αi

for i ≤ k and b′i = bi for k < i ≤ n.
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The Gram matrix for g in B′ is
[
Ik 0
0 0

]
.

Remark 29: We have n − k = dimV0, indeed we saw that v ∈ V0 i� Gt[v]B′ = 0 hence dimV0 =
dimkerGt.

If two forms are represented by the same matrix up to a change of basis, their kernels must have
the same dimension. On the other hand, we just saw that any symmetric bilinear form g there is a

basis in which the Gram matrix is of the form

[
Ik 0
0 0

]
where n− k is the dimensuion of the kernel.

Hence there are n+ 1 classes of symmetric bilinear forms over V , one for each possible dimension
of the kernel.

3.2 The real case

Now consider the case V be a �nite dimensional vector space over R. Let g be a symmetric bilinear
form de�ned on V .

We can do a similar trick as in the complex case, replaceing each bi such that g(bi, bi) 6= 0 by
b′i = bi/

√
|g(bi, bi)|. We get that g(b′i, b

′
i) ∈ {1,−1, 0} for all i = 1, . . . , n. Taking vectors of the basis

in appropriate order, we can obtain the Gram matrix in the block form

Gp,m,z =

 Ip
−Im

0z


As in the complex case, we will prove that the dimension of the submatrices above depend only on

g. Here again, we can see that v ∈ V0 i� Gt[v]B = 0 i� [v]B ∈ Span(bm+p+1, . . . , bn). In particular,
z = dimV0.

To understand the geometric meaning of p and m we will need the following de�nitions.

De�nition 30: Let g be a symmetric bilinear form on a vector space V over R. We say that g is
positive de�nite if for any nonzero vector v ∈ V , we have g(v, v) > 0. It is negative de�nite if for
any nonzero vector v ∈ V , we have g(v, v) < 0.

Example 31: An inner product on a real vector space is exactly a symmetric bilinear positive def-
inite form on V (linearity in the second variable, symmetry, and positive de�niteness were the three
properties de�ning inner products over R).

In general however a symmetric bilinear form is neither positive nor negative, but we can look at
its restriction to subspaces of V .

De�nition 32: Let g be a symmetric bilinear form. We de�ne:
p(g) to be the maximum dimension of a subspace W such that g|W is positive de�nite,
m(g) be the maximum dimension of a subspace W such that g|W is negative de�nite,
z(g) = dimV0.

Example 33: Let V = R3, B the standard basis, and [g]B = G =
[
1 0 0
0 1 0
0 0 −1

]
.

For v = (x, y, z) ∈ R3 we have g(v, v) = x2 + y2 − z2. ( Thus q(v) = q(x, y, z) = x2 + y2 − z2 is the
quadratic form de�ned by g. This example is a 3-dimensional analog of the 4-dimensional Minkowski
space with the Lorentz form de�ned above.)

So R3 is split into 3 parts � the cone of self-orthogonal vectors {(x, y, z) ∈ R3 | x2 + y2 − z2 = 0},
the set of vectors inside the cone {(x, y, z) ∈ R3 | x2 + y2 − z2 < 0}, and the set of vectors outside the
cone {(x, y, z) ∈ R3 | x2 + y2 − z2 > 0}. Draw the picture or refer to:
https://en.wikipedia.org/wiki/Minkowski_space#/media/File:World_line.svg

Our goal is to �nd p,m, n for this particular example. We have n = 0 because the null space of g
is trivial � V0 = {0}: while there are non-zero self-orthogonal vectors, there are no non-zero vectors
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orthogonal to the whole space. This can be easily checked directly (what are g(e1, v), g(e2, v), g(e3, v)
for a general v = (x, y, z)?), but it is also implied by 21.

The form g is positive on the 2-dimensional subspace {z = 0} but is not positive on any 3-
dimensional subspace (the only one such subspace being V itself), so p = 2.

The form (−g) is positive (one can say "g is negative") on the 1-dimensional subspace {x = y = 0}
but is not positive on any 2-dimensional subspace, because no plane through the origin of R3 is wholly
contained inside the cone. Therefore m = 1.

It should be noted that the spaces of maximal dimension on which g is positive or negative are not
unique. A perturbed x, y-plane or the z-axis would do as well. Besides {z = 0} the form g is positive
on {z + 0.1x = 0} or on {z + 0.1x − 0.15y = 0} etc. Besides {x = y = 0} the form g is negative on
{x = 0, y = 0.1z} or on {x = 0.1z, y = 0.15z} etc.
Theorem 34 (Sylvester's Law of Inertia): Let g be a symmetric bilinear form de�ned on V and B be a
basis of V which is orthogonal with respect to g. Then the number of vectors v of the basis B for which
g(v, v) > 0 is exactly p = p(g), the number of basis vectors v such that g(v, v) < 0 is m = m(g), and
the number of basis vectors v such that g(v, v) = 0 is exactly z = z(g). In particular, these numbers
are uniquely de�ned by g and do not depend on B.
De�nition 35: The pair (p,m) is called the signature of the bilinear form g (or of the associated
quadratic form q).

(Some sources de�ne signature as a single integer � the di�erence p−m, instead of the pair (p,m).)

Example 36: The inner product has signature (n, 0), the zero form � (0, 0), the Lorentz form � (3, 1).
(Sometimes the Lorentz form is de�ned as the one of signature (1, 3).)

Proof. Let B = (b∞, . . . , b\) be a basis which is orthogonal with respect to g. Suppose without loss of
generality that

g(bi, bi)


> 0 if i ≤ p
< 0 if p < i ≤ p+m

= 0 if p+m < i ≤ n

We need to show that p = p(g), m = m(g), z = z(g).
Let W+ = Span(b1, . . . , bp),W− = Span(bp+1, . . . , bp+m),W0 = Span(bp+m+1, . . . , bn). Then we

have V =W+ ⊕W− ⊕W0.

z=z(g): Indeed, if bj ∈ W0, then for any bi ∈ B we have that either i 6= j, so that by orthogonality
of B we get g(bj , bi) = 0, or i = j but then since bi ∈ W0 we have g(bi, bi) = 0. Hence bj ⊥
Span(b1, . . . , bn) = V , in other words bj ∈ V0. Thus W0 ⊆ V0.

Conversely, let v ∈ V0. Decomposing v as we may, v = w+ + w− + w0, with the three summands
in the three respective spaces and taking g(v, w+), we obtain

0 = g(v, w+) = g(w+ + w− + w0, w+) = g(w+, w+) + g(w−, w+) + g(w0, w+) = g(w+, w+) + 0 + 0

so w+ = 0. Considering g(v, w−) we prove in a similar way that w− = 0. Hence v = w+ + w− + w0 =
0 + 0 + w0 ∈ W0.We have just shown that V0 ⊂ W0, thus establishing that the two spaces are equal,
and in particular their dimensions are equal: z′ = z.

p=p(g): It is an immediate check that g is positive de�nite on W+ = Span(b1, . . . , bp): if u =∑k
i=1 uibi 6= 0 then g(u, u) =

∑p
i=1 u

2
i g(bi, bi) > 0. In particular, we get that p ≤ p(g) by de�nition of

p.
It is left to show that p(g) ≤ p. To demonstrate this consider 2 spaces � a space W of maximal

dimension p(g) on which g is positive de�nite, and the space W− ⊕W0. We claim that they intersect
trivially: W ∩ (W− ⊕W0) = {0}. Indeed, let v ∈ W ∩ (W− ⊕W0). Since v ∈ W− ⊕W0 we have
g(v, v) ≤ 0 (check this). Since v ∈ W we have g(v, v) ≥ 0. Therefore g(v, v) = 0 and, again since
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v ∈ W , �nally v = 0. The trivial intersection of W and W− ⊕W0 implies that their dimensions add
up to at most dimV : p(g) + (m + z) ≤ dim(V ). However p + (m + z) = dim(V ), so p(g) ≤ p. The
relation p = p(g) is established.

m=m(g): Repeating the argument for (−g) we can get m = m(g).

Corollary 37: A symmetric real matrix is congruent to exactly one matrix of the form

Gp,m,z =

[
Ip
−Im

0z

]
that is, the sizes of blocks of positive ones, negative ones and zeros are uniquely de�ned by g.

Using the diagonalization procedure developed in the previous section, we get the signature of a
form g, among other things ((2, 1) for the example in the end of the previous section as the diagonal
matrix D that we obtained has 2 positive entries and one negative entry on the diagonal). However,
if we are interested in the signature only, it is probably easier to work with the quadratic form q asso-
ciated with the given bilinear form g. If q is reduced to an algebraic sums of squares of new variables
obtained from the old ones by invertible linear changes of variables, then the signature is (p,m), where
p is the number of positive terms and m is the number of negative ones.

Example 38: q(x, y, z) = x2 + y2 + 3z2 − 2xz − 4yz, or equivalently g is the bilinear form for which
the Gram matrix

G =

 1 0 −1
0 1 −2
−1 −2 3


in the basis, for which x, y, z are the coordinates. (Note that the non-diagonal entries in the matrix
come in pairs, so each one is a half of the corresponding coe�cient of the quadratic form.)
Completing squares, we get

q(x, y, z) = x2 + y2 + 3z2 − 2xz − 4yz

= (x− z)2 − z2 + y2 + 3z2 − 4yz

= (x− z)2 + y2 − 4yz + 2z2

= (x− z)2 + (y − 2z)2 − 2z2

so the signature of g (or of q) is (2, 1).
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